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APPROXIMATE SOLUTION OF AN AXISYMMETRIC CONTACT

PROBLEM WITH ALLOWANCE FOR TANGENTIAL

DISPLACEMENTS ON THE CONTACT SURFACE

UDC 539.3I. I. Argatov

A structurally nonlinear contact problem of a punch shaped like a paraboloid of revolution is studied.
An equation for the contact-pressure density is derived with allowance for the radial tangential dis-
placements of the boundary points of an elastic half-space. A method for constructing a closed-form
approximate solution is proposed. The effect of the tangential displacements on the main contact
parameters is discussed.
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1. Refined Formulation of the Contact Problem. We consider an elastic half-space z > 0 indented
by a punch shaped like a body of revolution. Introducing a cylindrical coordinate system (r, ϕ, z), we write the
equations of the punch surface (before loading):

z = −Φ(r).

For simplicity, we assume that the punch occupies a convex domain z 6 −Φ(r) and it is in contact with the plane
z = 0 at a single point chosen as the coordinate origin.

We denote the vertical displacement of the punch by δ0. The condition that the points of the elastic body
do not penetrate into the punch is written as follows [1] (see also [2]):

uz(r, ϕ, 0)− δ0 + Φ(r + ur(r, ϕ, 0)) > 0. (1.1)

The equality in relation (1.1) defines the contact area ω. Because of the axial symmetry and adopted shape of the
punch, the area ω is a circle, whose radius is denoted by a. Thus, within the contact area ω, the following equation
holds:

uz − δ0 + Φ(r + ur) = 0 (r 6 a). (1.2)

Here the displacements uz and ur depend only on the radius r.
We assume that the displacement ur is small compared to the radius of the contact area ω. In this case, the

nonlinear equation (1.2) can be replaced by the following linearized equation [1]:

uz − δ0 + Φ(r) + Φ′(r)ur = 0 (r 6 a). (1.3)

Here and below, the prime denotes differentiation.
In the particular case of a punch shaped like a paraboloid of revolution

Φ(r) = r2/(2R0)

(R0 is the curvature radius of the punch surface at its apex), Eq. (1.3) becomes

uz(r) + rur(r)/R0 = δ0 − r2/(2R0) (r 6 a). (1.4)

Expressing the displacements uz(r) and ur(r) in terms of the contact pressure p(r) according to the solution
of the Boussinesq problem (see, e.g., [3]), we write the displacement-compatibility condition (1.4) in the following
form [4]:
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∫ ∫
ω

p(ρ) dσ

R(r; ρ, ϕ)
− αr

2R0

∫ ∫
ω

r − ρ cos ϕ

R(r; ρ, ϕ)2
p(ρ) dσ =

πE

1− ν2

(
δ0 −

r2

2R0

)
. (1.5)

Here dσ = ρ dρ dϕ is the unit area, E is Young’s modulus, ν is Poisson’s ratio, R(r; ρ, ϕ) = (r2 + ρ2 − 2rρ cos ϕ)1/2,
and α = (1− 2ν)/(1− ν).

Equation (1.5) is used to find the contact-pressure density p(r). The radius of the contact area a is determined
from the condition that the contact pressure is positive and vanishes at the edge of the contact area:

p(r) > 0 (r 6 a), p(a) = 0. (1.6)

A numerical solution of the problem considered was obtained in [1, 4]. A two-dimensional contact problem
in a refined formulation was studied analytically in [5, 6]. Linearized conditions similar to (1.4) were considered for
plate and shell models in [7, Sec. 2.3]. In the present paper, a method of constructing an approximate closed-form
solution of Eq. (1.5) is proposed.

2. Equation for the Radius of the Contact Area. Using formula (3.613.2) of [8], we find
2π∫
0

a∫
0

r − ρ cos ϕ

r2 + ρ2 − 2rρ cos ϕ
p(ρ)ρ dρ dϕ =

2π

r

r∫
0

p(ρ)ρ dρ. (2.1)

With allowance for this equality, Eq. (1.5) becomes∫ ∫
ω

p(ρ) dσ

R(r; ρ, ϕ)
= u(r); (2.2)

u(r) =
πE

1− ν2

(
δ0 −

r2

2R0

)
+

πα

R0

r∫
0

p(ρ)ρ dρ. (2.3)

We use the general solution of the integral equation (2.2) obtained in [9–11]:

p(r) =
F (a)

π
√

a2 − r2
− 1

π

a∫
r

F ′(s)√
s2 − r2

ds; (2.4)

πF (r) = u(0) + r

r∫
0

u′(t)√
r2 − t2

dt. (2.5)

Condition (1.6) for vanishing of the contact pressure at the edge of the contact area implies the equality
F (a) = 0. According to (2.3) and (2.5), we have

δ0 =
a2

R0
− (1− 2ν)(1 + ν)

ER0
a

a∫
0

p(t)t√
a2 − t2

dt. (2.6)

In this case, formula (2.4) becomes

p(r) = − 1
π

a∫
r

F ′(s)√
s2 − r2

ds. (2.7)

Equation (2.6) is used to determine the unknown radius of the contact area from a specified value of the
punch displacement δ0.

3. Calculation of the Force that Presses the Punch against an Elastic Body. We denote the
resultant of the contact pressure by P :

P = 2π

a∫
0

p(ρ)ρ dρ. (3.1)
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Substitution of (2.7) into (3.1) leads to the following equation [11]:

P = 2

a∫
0

F (s) ds. (3.2)

Substituting the expression for the function F (s) (2.5) into (3.2) and using (2.3), we have

u(0) =
πE

1− ν2
δ0, u′(t) =

πα

R0
p(t)t− πE

1− ν2

t

R0
.

Thus, after evaluation of the definite integrals, Eq. (3.2) becomes

P =
2E

1− ν2

(
aδ0 −

a3

3R0

)
+

2α

R0

a∫
0

s∫
0

p(t)ts√
s2 − t2

dt ds.

Changing the order of integration in the iterated integral, we find that

P =
2E

1− ν2

(
aδ0 −

a3

3R0
+

(1− 2ν)(1 + ν)
ER0

a∫
0

p(t)
√

a2 − t2 t dt
)
.

Taking into account the expression for the quantity δ0 (2.6), we finally obtain

P =
4E

3(1− ν2)
a3

R0
− 2α

R0

a∫
0

p(t)t3√
a2 − t2

dt. (3.3)

It is worth noting that Eq. (3.3) can be derived directly from Eq. (2.2) taking into account (2.3) and using
the Mossakovskii theorem [12].

4. Maximum Contact Pressure. Formula (2.7) implies the following expression for the maximum value
of the contact pressure (at the center of the contact area):

p(0) = − 1
π

a∫
0

F ′(s)
s

ds. (4.1)

Differentiation of expression (2.5) yields

πF ′(r) =

r∫
0

u′(t) + tu′′(t)√
r2 − t2

dt.

Substituting this expression into (4.1), we arrive at the formula

−π2p(0) =

a∫
0

ds

s

s∫
0

u′(t) + tu′′(t)√
s2 − t2

dt.

Changing the order of integration, we obtain

−π2p(0) =

a∫
0

(π

2
− arcsin

t

a

)
[u′(t) + tu′′(t)]

dt

t
.

Finally, integration by parts yields

−π2p(0) =

a∫
0

(π

2
− arcsin

t

a

)u′(t)
t

dt +

a∫
0

u′(t) dt√
a2 − t2

. (4.2)

Formula (4.2) was derived under the assumption that u′(0) = 0.
Differentiation of expression (2.5) with allowance for (2.3) leads to

F ′(s)
s

= − 2E

(1− ν2)R0
+

α

R0s

(
2

s∫
0

p(t)t√
s2 − t2

dt +

s∫
0

p′(t)t2√
s2 − t2

dt
)
.
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Changing the order of the integration by parts, we obtain
a∫

0

s∫
0

p(t)t
s
√

s2 − t2
dt ds =

a∫
0

p(t) arccos
t

a
dt.

Similarly, integrating by parts, we find
a∫

0

s∫
0

p′(t)t2

s
√

s2 − t2
dt ds = t

(π

2
− arcsin

t

a

)
p(t)

∣∣∣a
0
−

a∫
0

p(t)
(

arccos
t

a
− t√

a2 − t2

)
dt.

We note that the sufficient condition for vanishing of the double substitution is the boundedness of the density p(t)
within the contact area.

These relations and formula (4.1) can be combined to give

p(0) =
2E

π(1− ν2)
a

R0
− α

πR0

( a∫
0

p(t) arccos
t

a
dt +

a∫
0

p(t)t√
a2 − t2

dt
)
. (4.3)

We note that the last integral in (4.3) can be eliminated by virtue of Eq. (2.6).
5. Approximate Solution of the Contact Problem in a Refined Formulation. It should be noted

that the equations obtained above, in particular, Eqs. (2.6), (3.3), and (4.3) are exact equalities derived from the
original equation (1.5) without any simplifications. The right sides of these equations comprise the corresponding
expression obtained by Hertz theory (see, e.g., [13, 14]) and a correction that takes into account the effect of the
tangential displacements.

According to Hertz theory, the contact pressure under a punch shaped like paraboloid of revolution is given
by

p(r) = p0

√
1− r2/a2 (5.1)

(p0 is the maximum contact pressure).
Inserting expression (5.1) into the right side of Eq. (4.3), we obtain an approximate equation for the quan-

tity p0. Evaluating the quadratures, we have

p0 =
2E

π(1− ν2)
a

R0
− α

2π

a

R0

(π2

4
+ 2

)
p0.

This relation implies that

p0 =
2E

π(1− ν2)
a

R0

(
1 +

α

2π

a

R0

(π2

4
+ 2

))−1

. (5.2)

At the same time, substitution of expression (5.1) into Eq. (5.2) yields

δ0 =
a2

R0
− (1− 2ν)(1 + ν)

2ER0
p0a

2. (5.3)

Equation (5.3) with equality (5.2) are used to approximately determine the radius a of the contact area
for a specified value of the punch displacement δ0. Thus, the normalized radius of the contact area x = a/R0 is
determined from the equation

δ0

R0
= x2

(
1− αx

π + αx(π2/8 + 1)

)
. (5.4)

The values of the roots of Eq. (5.4) agree well with the numerical results of [4] obtained by approximating
the integral operators in Eq. (1.5) by finite sums. For example, the relative error in determining the radius of the
contact area a does not exceed 2% for ν = 0.375 and λ = α(δ0/2R0)1/2 = 0.5.

In the case where the force P is specified, the equation for determining the radius of the contact area should
be derived from Eq. (3.3) combined with (5.1) and (5.2). As a result, the force P is given by

P =
4E

3(1− ν2)
a3

R0
− αa3p0

2R0
, (5.5)

where the quantity p0 is defined by formula (5.2). It follows from Eq. (5.5) that
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3(1− ν2)
4ER2

0

P = x3
(
1− (3α/4)x

π + αx(π2/8 + 1)

)
. (5.6)

Finally, an approximate expression for the contact-pressure density is obtained by substituting the following ex-
pression into (2.7):

F (r) =
E

1− ν2

(
δ0 −

r2

R0

)
+

αp0r

4R0a

(
2ra + (a2 − r2) ln

a + r

a− r

)
,

where the quantity p0 is defined by formula (5.2).
6. Asymptotic Behavior of the Approximate Solution for a Small Contact Area. Assuming that

the ratio x = a/R0 is small, from Eq. (5.4) we obtain the following relation with accuracy to terms of order x2

compared to unity:

a =
√

δ0R0

(
1 +

α

2π

√
δ0

R0

)
. (6.1)

With allowance for (6.1), Eq. (5.6) yields

P =
4E
√

R0

3(1− ν2)
δ
3/2
0

(
1 +

3α

4π

√
δ0

R0

)
. (6.2)

Substituting (6.1) into (5.2) and ignoring higher-order terms, we obtain

p0 =
2E

π(1− ν2)

√
δ0

R0

(
1− α

2π

(π2

4
+ 1

)√
δ0

R0

)
. (6.3)

The accuracy of formulas (6.1)–(6.3) increases as the ratio δ0/R0 decreases.
7. Discussion. The exact relations (2.6), (3.3), and (4.3) allow one to study the effect of the tangential

displacements on the main contact parameters. For example, solution of the contact problem in the refined for-
mulation (for specified value of the punch displacement δ0) leads to an increase in the contact-area radius since
Eq. (2.6) implies the equality

a =
√

δ0R0

(
1− (1− 2ν)(1 + ν)

E

1∫
0

p(aτ)τ√
1− τ2

dτ
)−1/2

. (7.1)

It should be noted that according to condition (1.6), the contact-pressure density within the area is positive.
Furthermore, in accordance with formula (3.3), we obtain

P =
4E

3(1− ν2)
a3

R0

(
1− 3(1− 2ν)(1 + ν)

2E

1∫
0

p(aτ)τ3

√
1− τ2

dτ
)
. (7.2)

Substitution of the radius a defined by formula (7.1) into Eq. (7.2) yields

P =
4E
√

R0

3(1− ν2)
1− (3/2)I3(p)(
1− I1(p)

)3/2
δ
3/2
0 , Ik(p) =

(1− 2ν)(1 + ν)
E

1∫
0

p(aτ)τk

√
1− τ2

dτ.

By virtue of the inequality I3(p) < I1(p), it follows that accounting for the tangential displacements in the contact
problem leads to an increase in the force P for a specified displacement of the punch δ0. Using (4.3), we finally
obtain

p(0) =
2E

π(1− ν2)
a

R0

(
1− 1

2
I1(p)− (1− 2ν)(1 + ν)

2E

1∫
0

p(aτ) arccos τ dτ
)
.

Substitution of expression (7.1) into this equality yields

p(0) =
2E

π(1− ν2)

√
δ0

R0

1
(1− I1(p))1/2

(
1− 1

2
I1(p)− (1− 2ν)(1 + ν)

2E

1∫
0

p(aτ) arccos τ dτ
)
.

Thus, allowance for the tangential displacements decreases the maximum value of the contact pressure. It is worth
noting that a decrease in the maximum value of the contact pressure p(0) accompanied by an increase in the
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resultant of the contact pressure P is achieved by redistribution of contact pressure over larger area. We also note
that the conclusions formulated above agree with the asymptotic formulas (6.1)–(6.3).

The tangential displacements ur(a) were calculated in [4]. According to (2.1) and (3.2), we have

ur(a) = − (1− 2ν)(1 + ν)
2πE

P

a
. (7.3)

Substitution of expressions (7.1) and (3.3) into formula (7.3) yields

ur(a) = −2αδ0

3π

1− (3/2)I3(p)
1− I1(p)

.

It should be noted that in the derivation of Eqs. (1.5), deformations were ignored. In other words, the radius
of the contact between the surfaces of the elastic bodies due to deformation is equal to a + ur(a).

Galanov [15] showed that accounting for tangential displacements leads to a decrease in incompatible dis-
placements, i.e., penetration of the points of the elastic half-space into the punch. However, the contact problem
formulated with allowance for the tangential displacements becomes much more complicated. The approximate
solution constructed simplifies calculations and allows one to estimate the effect of this factor on the main contact
parameters.
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